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BENDING OF AN ANISOTROPIC PLATE CONTAINING
AN ANISOTROPIC ELASTIC INCLUSION

M. I. Zadvornyak and T. L. Martynovich UDC 539.3

A thin plate of thickness h is considered that has a curvilinear hole into which is
soldered an elastic body made of another material. The plate and the inclusion have recti-
linear anisotropy with respect to the elastic properties of the material and at each point
have a plane of elastic symmetry parallel to the median plane xOy. The principal elasticity
directions for the plate and inclusion are at an angle ¢ (Fig. 1). The line L dividing the
regions s(*) and s(® corresponding to the different anisotropic materials is described by
an equation of the form

J l\-
. W0 N g om0 FC 1<t (1)
t=ztiy=R[eP+ C.o : Z e <1
K=1

h=1
Along line L between regions g(a) (¢ = 1, 2), the conjugation conditions should apply:

(')H(l) . aH(‘!) (2)
A['E-‘l) — Algq?)i ]\7511) + d:l’ — Ngz-) _l[__ 0:‘[ ,

W = we oW . w2
) —_— —
dn aon

while in parts of the plate remote from the inclusion the bending and torsional moments are
bounded: M7y = M, M°°y = M,, mey = H,,. There are no external localized forces and dis-
tributed loads normal to the median plane in the regions s(a) (¢ =1, 2). Here n and T are
the normal and tangent to line L.

In the analytic solution, the region S(l) will be considered as infinite (the perturba-
tion in the elastic state of the plate due to the inclusion does not attain the outer bound-
ary of the plate).

Lvov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp.
165-171, November-December, 1983. Original article submitted August 23, 1982,
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The formulas from the theory of bending for anisotropic plates [1, 2] enable us to rep-
resen% §2) as integral relations containing an arbitrary function F(z) holomorphic in s (2
(or SL%)) [3]:

{Fu‘)d./(})::%ﬁ\p v LC)[’/ ydt, (3)
L 4
\Foar® = T e | o as,
b I L
(Fiyary = poyar, (Fiar® = [ Fiyao®
L |2 L i
where
: ‘.‘,‘ -/ o ) }(r/) 3 . F‘i (4)
AE) L fapf L 7 (0
! ﬂgd!'((] ’() (D] (A‘j )L'“J ‘E’
= ' .
ar' = (1 + - (LR i) o (A I
=1
Here t is the affix for a point on contour L, while 2(@), = X + u(a> sy (j, @ = 1, 2) are
generalized complex variables, which vary in the regions s (@) obtalned from the regions
s{a) by appropriate affine transformations, while p<a) = a(aa + iB~ (a) are the roots of

the corresponding characteristic equations, p\a\ s q\ 74 are Lertaln constants [1, 2], o W)

((m)*'qu((oﬁ are analytic functions descrlblng the state of stress in the plate, and
C is a real constant.

The contours for the regions S(@); of the variables z(@): are denoted by L(a) , while
the affixes for the points are denoted by t(a)j. Between the affixes for the p01nts on L(a)
and L there exists the affine correspondence

z;:”'):%(j inY e 4 —(1+zu(°‘)) (Gooz=1,2). (5)

The real constant C appearing in (3) is determined from the condition for uniqueness in
the plate deflection

2re| 3T ¢l (1) ek | <o,
=1" () .

L;

The analytic functions @{(2{)= ¢!*" (s(*)(j,2=1.2) should satisfy the conditions for
uniqueness of the dlsplacements

[ @l () ar = pid (U — yP@) 4 DD (49 2P (= 1, 2).
) (6)
(23] AL

Ly
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where M(@)_, M(@)_ are the components of the principal moments and P(®), is the principal
vector for the forces applied to the contour L of the regions s(@) (q = 1, 2). The quanti-
ties D(aj)k (k, @, § =1, 2) are calculated from the following formulas:

(o "
n (ug” — )
ADEPBPE (1l — @) — )’

D;al) — D(lccl) (-“(11)’ ‘E(l';.), ‘u{;'), .aéa)) —

() 12 u(U.) 2 LL(m)_ (o)
DD — =) (u(“). x_l(“), u(cz)’ a(q)) — I ! il' 2 l ( 2 _A“-z ) .
2 2 b TR A T AT T I ) 4051%)[5{/‘){5;“’(”%“) o }Lgm))(pgx) — .u‘:klf/\.))’
D'lo:‘z) _ 0:1\ (ll :<) J 4 )’ p(la)’ ﬁ(ix))’ Dgzz) — D{lf/.l) (Au.(lr/,)’ l;l;'/v)’ ‘u(lc:)" ?'(f‘))-

For large lz( ), !, the functions ®(1)j (z(l)j) take the following form (principal vector

p(a), = 0):
CDgl) (:.'].1)) = ;1"].1) - D‘lj)z;l)_1 40 (41)-2) (2;1) = S(]-l), j=1, .3)

The constants p{13) are found from the conditions for uniqueness in the displacements of
(6), while the coefficients A'! j are related to the bending and torsional moments in the in-
finitely remote parts of the plate by [2]

2 2
o B W L (1) 41 o __ (1) 4(1)
MY =—2Re .},_‘ pPAN, 1% = —2Re qu 40,
=1 7=1
© . ome NV (1) 4(1)
a3 = —2Re '21’j A5,
=

If Iz(z)jl are small, the functions ®<2)j (z(z)j) are put in the following form (P(a)z =
0):

O ()= AP D o () (7 =8P 102

v
When the condition jgk\ckﬁ<<1 is obeyed [4], the function
) R==1

conformally maps the region outside unit circle Y([Cl > 1) into the region outside the line
of division L described by (1).

The equations for the contours L(a)j of the regions S(a)j according to (1) and (5) take
the form

N
(o) . A () B (xj)~—k N . _
i _El(/,kﬂg +u ey (o=, joa=12), N
where
7 1 . S 5 1 v Lo ().
WP = [R (1= ) + (U mfF) RO 29 = = BE, (157
. ‘ ] ‘
“('17 ——_13—[ (1-—m ’)) (1 zuga))RCI]; .HE{“’)=TBC@('1—Z.H§“))
(k=2,..., N).
From (7) we get
V »
) = [ E A@D G S‘,kpggﬁo'k—l] do  (j=1,2). (8)
=1 B=1
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In the transformed regions outside and within unit circle y, the functions g (a),
and the arbitrary holomorphic function F(z) can be represented as power series in the varl—

|5

ables g\ 3 {(j, e =1, 2) and z:
(D) — 4D A W,y
ij (‘j )-—AJ \ oy (111111 (D ( ) /1(1) o
rz'*l 1 )
) (9)
(2) (A2 o 4(2) _ m)m)_ 1 2i)s(2
DG (24%) = 4P+ B f——ﬂj‘ SR
20
Fiay=Floid]= 3 E5™"
) ) s o . (10)
(Pes®, res® =t [P<t he=1,2).
I 7 7 7
and on unit circle y the variables 7 and C(d) take the same value o = ele.
On the basis of (8) and (9) we find for the boundaries L(a) of the regions S(a)j (z(a)j
> t(a) C(a + o) that the following representations apply:
@l (£ dt(1)~A(1)dt(1)—'—[ PR W "}Jc,
(") 2% =t (11)
D (12Ydl? = AP - BPPdD Zoa Dok 4 Zlb“ﬂo—’]d o,
= h=
where
M{t ( (
(13 Z (k4+n 1y (10 409
a kin+ H
n = Rh+n-+1""k (12)
. Nin—~1 . n—2 ( .
b%”: > k—nt )Z,({mn ASJ) — > (n—k =1 pnl”,_lA( 4
k=1 h=1
NAin+1
4("3),

('“ = Z (n—k—+1) /»(2“ Ai(fj) — 2 k—n—1 p(ml Ay
k=1 ’

k=1
. N—n+1
b(nQJ) = — Z (hd+n—1*r ,/n 1A(23",
k=1 /

From (8) and (11) we get the boundary

with 2@ =0, u(@d) =0 forn>N (§, a = 1, 2).
values of the functions
(I)(JQ) (Z(]a)) <] &= 1’ 2) on L(CC) fOf Zja) if/:l)’ ;(30() -G (G;E N|‘)
N—9
2 a(lJ) ko 2 b(ly)g—k
k_
(i=1,2), (13)

(1) (1) . AL
@ (159) = 4 + \ -
Z ANICAES 2 ’fH%” Ja=k
-1

i (27 gk N z b(ﬁ])o;-k
(0)<t(9)) A(o) ‘I“B( - k=0 h =1 (=1, 2.
2 kA ("J) h—~1 Z kp(2])0_k—
=1

=1

and (11) into (3) and integrate on the basis that the function

We substitute (4), (10), i
to get a finite system of linear algebraic equations for the coeffi-

of (10) is arbitrar
cients q(®J blad) | A z)j, B(z)j of the form

2 2
Y 3 . - o
2 gyt [( @ 4 -;_) (a9 4 nr (D ALY 4 €20 B, ) — (

e
e “(ai)y g L2y R(2 —
(R -(a)) (bgﬁ,lj—)l - "nga])A&“) -+ ']gz ilBg >621)] = RCE,,i

2 2 ( ) 4
2 @ i | = (e .
Z 2 (— =it [( “ 2y —(a )(anl—]l + "KSJ)A(;‘OC) 8;21)135'2)5205) -
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) ﬁq)
; +i ;Zg:) n41
i

) R "fﬁﬁ’lb’ﬁ-”@m)] = BnCCyl, (14)

—fre

2 2 1 e . - - 2 oy — oy oy A=
2 3 O (1 ) A 1o s, ) — (1) (B =m0+ TR B, o,

2 2 s .
~ ~(otj NGO ~(2) B ; N gl 4@ 2 . v

DS (0 [(4 4 ) (3D, A AR PPAP + BP0y, ) — (Lo ) () — AT PR B8 )] =0 (s 2,

j=1la=1

where

N—n—1

n N
- S . .
) = h}_}I AN L 4 k_zl EAFDRED S e e,

@) S i S o
WP = B B — 3 L 3 e
, = =1 h=1

in which e(aj)n = 0 for n > 2N — 1, n(aj)n =0 for n > 2N + 1, dpx is the Kronecker symbol.
The quantities a(aJ)n and b(aJ)n are expressed in terms of the coefficients A(aj)k (G, a =
1, 2) by means of (12).

If the inclusion is free from external load, we have from (6) with (11) that
B =0 (j, 2 =1,2).
Also, outside unit circle v (o = 1) and within it (o = 2) the complex potentials Q(“)j
(z(d)j) (j, @ = 1, 2) should be bounded. For this purpose we specify that the zeros in the
numerator coincide with the zeros in the denominator in the fractionally rational part of

the functions of (13), with the number of these outside y being N — 1 and the number inside
y being N + 1 [4].

Then the coefficients a(aj)n and b(aj)n should satisfy the conditions

"$F anea N st
2 ak]Cjn - Z bkjgjn =0,

K=p h=1 (15)
2N—1 . N N
3 Q2R W DR =[N =1, I=1LN+1, j=12),
h=0 k=1
where C(l)jn and C(z)jz are the roots of the equations
N ) N )
2 k}\,%a]);‘(ia)h"l - E kugx‘g)c‘ga)—%——l =0 (l6>

h==1 k=1

correspondingly greater than one and less than one in modulus:

[ >1 [68P]<t =0 F=11=TLN+1 =12,

We combine conditions (15) with (14) to get a closed system of linear algebraic equa-
tions of order 12N for the coefficients

1j 2j 2j 1j 2 — — = : i =1, 2).
o, o), o2, B39 A§.>,B§.2) (k=1 N =1, n=1, 2N, ] +2)

For N = 1 we get a solution for a plate bearing an elliptic inclusion. Then, as follows
from (1l4)-(16) we have afﬁ)=0,bﬁD::O,B?)zo,bgﬂ;éo,b&”::O(m:>2) and the functions of (13)
take the form
b(21]')

o ()= 4+ (49 40,50 ), 0P (49) =42,

;b<11j)€§_1)2 — H;lj)

where
&Y ST 4 (1 (15) . (1)
0 z —I—l/z] apihy o aah L 2T b
2 22,{19 T 2 ’
;1)
N a - ins’b a-—b . .
”9”=r———7;i———¢ CI==&q3%;and a and b are the semiaxes of the ellipse.
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As an example we consider the bending of an orthotropic plate bearing an elastic ortho-
tropic inclusion, where the line of junction is described by

z = (0) = R(G + Co* + Cy0-2 + C3073).

By varying the coefficients Cy, one can obtain an equation for the line of junction, for
example in the form of a triangle (C; = 0, C, = 0.25, C; = 0), trapezium (C, = —0.021, C, =
0.102, Cs = ~0.150), or rectangle (C; = 0.632, C, = 0, C5 = —0.099 for the ratio of the size
of the rectangle A = a;/by = 5 [5]) with rounded corners, etc. [6].

At infinity the plate is bent by the moments M7y = M, M°°y = M,, mey = 0. The inclu-
sion is free from external load. The principal elasticity directions in the plate and inclu-
sion are parallel to the coordinate axes x and y (¢ =0). In that case,

ME =0, NP =0, PO =0, p® = __Il(l&)’ P B, 0 =@, A =
_ _'rga), a;az) :E;al), b;az) — 57(:11)’
Af_,“’) _ Zi‘.’)! B(zz) = jg‘;e)’ R=R, ¢y =
=T, MEY=ZED, W0 Z[En g o
dOME — oM
2 (E(ll)qgl) . Pi”éﬁ”) !

=£$n,n$m=ﬁyq 4n= '4”=Ep,h$”=0(hazhﬁ

(all the coefficients are complex).

The numerical calculation was performed for an orthotropic plywood plate and an inclu-
sion with the following characteristics [1]:

(A) E_ = Epe, Ey= 0165-10° MPa, E, = 0,437.10* MPa,
G = 0,686.10% MPa, v, = 0,31, v, = 0,026, py = a - i,
Py = —pg, @ = 1,04, f = 1,55
(B) Fp = Epgye F1 = 0,437-10* MPa, E, = 0,165-10° MPa,
G = 11,686-118 MPa, v, == 0,026, v, = 0,31, py == a + if),
Hp = —y, @ = 0,299, B = 0,444,

Figure 2 shows the distribution of the moments M(@)g (a = 1, 2) in the plate (A) contain-
ing a rectangular (a./b, = 5) inclusion (B) along the line of junction. The line denoted by
1 characterizes the bending moments M\* g in a plate bearing a hole, while line 2 is for a
plate with an elastic core, 3 is for a plate with a rigid core, 4 represents the bending
moments M(Z)e in the core, and 5 represents the bending moments when the plate and core are
of a single material. The same graphs are also given in Figs. 3 and 4 for a plate (B) cor-
respondingly with the above triangular and trapezoidal inclusions (4).

When the principal elasticity directions of the plate and inclusion lie at an arbitrary
angle ¢, we have to rotate the x'y'z' coordinate system around the axis z = 2z' through an
angle ¢ (Fig. 1, with the x' and y' axes coincident with the principal elasticity directions
in the inclusion) and convert the rigidities D(z)ij of the inclusion on going to the new axes
in accordance with formulas that take the following form [1l] for an orthotropic material:
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Fig. 5

D2 = D{ cos? ¢ 4 2D§? sin® ¢ cos® @ - D® sin® @,
D) = D{? sin® ¢ -+ 2D sin”  cos® ¢ 4 DR cos* ¢,
D — D® + (D + D — 2D sin® ¢ cos® p,

D2 = DPw{® (D - DB — 2D@)) sin® ¢ cos® p,

1
D = 7 (D(zz) sin® ¢ — D{® cos® ¢ - D cos 2¢) sin 2¢,

1
D® = = (D(zz) cos® ¢ — D{¥ sin® ¢ — D) cos 2¢) sin 2¢.

The following formulas [1] are used in converting the complex bending parameters u(z)l and
u(z)é of the inclusion on going to the new axes:

Hgywsw—ﬂnw H?ywsw—ﬁnm

(2)

piP = 2)

cos ¢ sing cos @ --piP sing

Here D@, D@, DD, D = D@2 ¢ 2D®; pl®’, u®"  are the principal rigidities and complex bending
parameters for the orthotropic inclusion in the x'y'z' coordinate system (Fig. 1).

Figure 5 shows graphs for the distribution of the moments M(a)e (¢ =1, 2) on the line
of junction between the plate (A) and a rectangular inclusion (a,/by = 5) (B) when the prin-
cipal elasticity directions of the plate and inclusion lie at a mutual angle ¢ =x/3 (solid
line). The graphs in the upper part of Fig. 5 show the bending moments in the plate, while
those in the lower part show those in the core. The broken lines characterizes the case ¢ = (.
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